Skip to main content

Blog Post #5 - Kevin West's Seed Story (By Matthew Guerrero)

      For our project, I interviewed my friend Kevin West (he's very handsome). He talked about his experiences that he went through while working on his Story of the Seed and all the thoughts that he had on the project. I first asked him what he had learned about while working on The Story of the Seed. Kevin learned about the biochemical cycles and how they applied to the plant in the garden. He then when on to say that he started to understand all the materials needed to keep a plant healthy and grow sufficiently. Then, I asked about the most surprising or amazing things he encountered. It amazed Kevin at which the speed their plant grew, he had expected his plant to take a very long time to grow but instead his plant grew somewhat fast. It also surprised him how much time and effort went into growing a plant. The next thing I asked Kevin was about the funniest things he saw, and while there wasn't a lot that he found funny he still had some cool moments. Kevin's teammates and his experience working on this project brought him a lot of joy and caused him to laugh a little. The final question I asked Kevin was about the the most interesting thing to him that made him think deeper about a certain topic. The chemical compounds and the compounds of the necessary materials were really interesting and caused Kevin to want to understand these interesting processes more.

Comments

Popular posts from this blog

Blog post #7

Fertilization occurs in flowering plants through the process of fertilization. The center of the flower has long thin filaments with anthers at the top. This is called the stamen. Four pollen sacks are located in the plants anthers which contain MMCs, Micro Mother Cells. Each of the pollen sacks produces eight pollen grains, the sperm cells from the MMC. Once the pollen grains inside each of the sacks are ready the anthers will burst open vomiting the sticky pollen onto the flowers stamen in a process called dehiscence. The flowers bright colorful pedals lure insects inside to drink its nectar, located at the flowers base. Once the insects climb into the flower the sticky pollen from the anthers gets stuck on its feet, legs, or body. In the process of cross pollination the insect that collects this sticky pollen will transfer it to another flower pollinating it in the process. In the process of self pollination the pollen will be moved from the stamen to the pistol/carpal of the flowe...

Blog Post #5: Lauren Shearer (By Colin Mccombs)

For the Story of the Seed project I interviewed my very close friend Lauren Shearer. She talked about all of the experiences that she had while she was working on the project and her thoughts on the project. She learned about the different variables tat need to be considered while growing the plants. The process of a growing plant differs with each plant, if you change pretty much anything when you tried to grow multiple plants. She was amazed at how fast and tall their "Control group" plant grew. It not only went quick, bit also with the right amount of soil;water, it would be healthy. Sadly, what surprised me that shouldn't have, was that the last pot with Dr Pepper did not grow at all. Lauren was forced to stop and think harder when her team had to figure out the watering schedule for our plants. We had to map out the correct days and the amount of water for each pot so that the project would work successfully. Her entire experience of her project made her laugh be...

Blog Post #8- A Matter of Selection (Jesse Zalk)

1)  The   Brassica oleracea plant, a seemingly boring specimen, does manage to have variation in itself. My team, seemingly lazy at the moment, did not want to join me to the garden excursion, so I went by myself to measure data. The data I decided to record was the width of the Brassica Oleracea and the length of the leaves on the plant (Both Kale and Brussel Sprouts). I decided that the leaf lengths had more variation then the plant height. Here is the data that I collected. Leaf Length Plant 1: leaf 1 - 11,5 cm Plant 1: leaf 2 - 9.5 cm Plant 1: leaf 3 - 13.5 cm Plant 1: leaf 4 -  10.5 cm Plant 1: leaf 5 - 11 cm Plant 1: leaf average - 11.2 cm Plant 2: leaf 1 - 9.5 cm Plant 2: leaf 2 - 8 cm Plant 2: leaf 3 - 8.5 cm Plant 2: leaf 4 - 10 cm Plant 2: leaf 5 - 11 cm Plant 2: leaf average - 9.4 cm Plant 3: leaf 1 - 14.4 cm Plant 3: leaf 2 - 13.4 cm Plant 3: leaf 3 - 12.8 cm Plant 3: leaf 4 - 13.7 cm Plant 3: leaf 5 - 14.1 cm Plan...